

Exercise 6 – 14/11/2023

## Parameter determination based on data from in-situ tests

## 1. Standard Penetration Test (SPT)

## Introduction to the SPT Test Procedure

The test uses a thick-walled sample tube. This is driven into the ground at the bottom of a borehole by blows from a slide hammer. More specifically, the test consists of the following steps:

1. Driving the standard split-barrel sampler a distance of 460 mm into the soil at the bottom of the boring.
2. Using a 63.5-kg driving mass (or hammer) falling "free" from a height of 760 mm.
3. Counting the number of blows to drive the sampler the last two 150 mm distances (total = 300 mm) to obtain the **N** number.

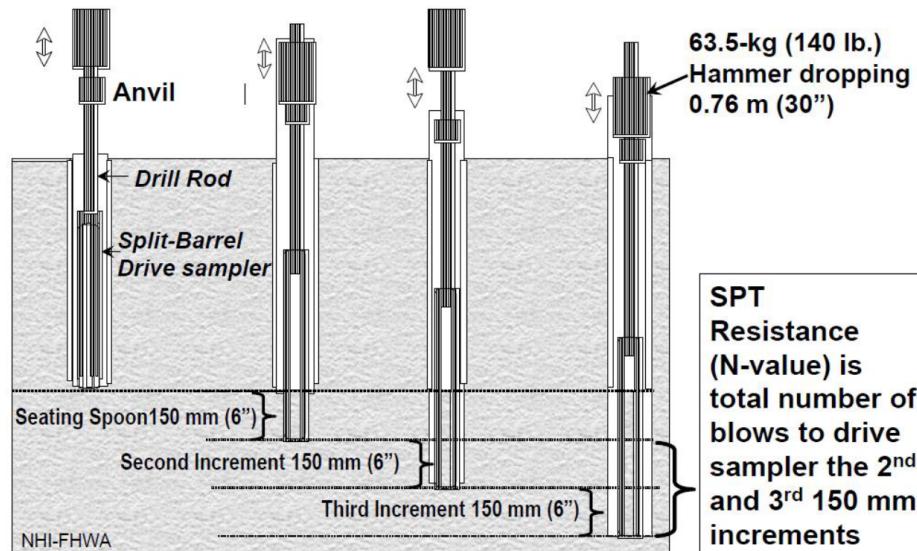



Figure 1 : SPT - Procedure

Based on the data returning from the test, one can estimate the shear strength angle  $\varphi'$  of the soil in the first few meters of the subsurface.

## Problem Statement

The Figure below depicts, on the righthand side, the measured blow count,  $N$ , with a SPT test in relation to the depth below ground surface. The groundwater table (GWT) is at - 4.4 m bgs (below the ground surface). We assume that the unit weight of the sand increases linearly from  $\gamma = 15 \text{ kN/m}^3$  to  $\gamma = 18.1 \text{ kN/m}^3$  above GWT, while below the GWT, the saturated unit weight is  $\gamma_{\text{sat}} = 19.75 \text{ kN/m}^3$ .

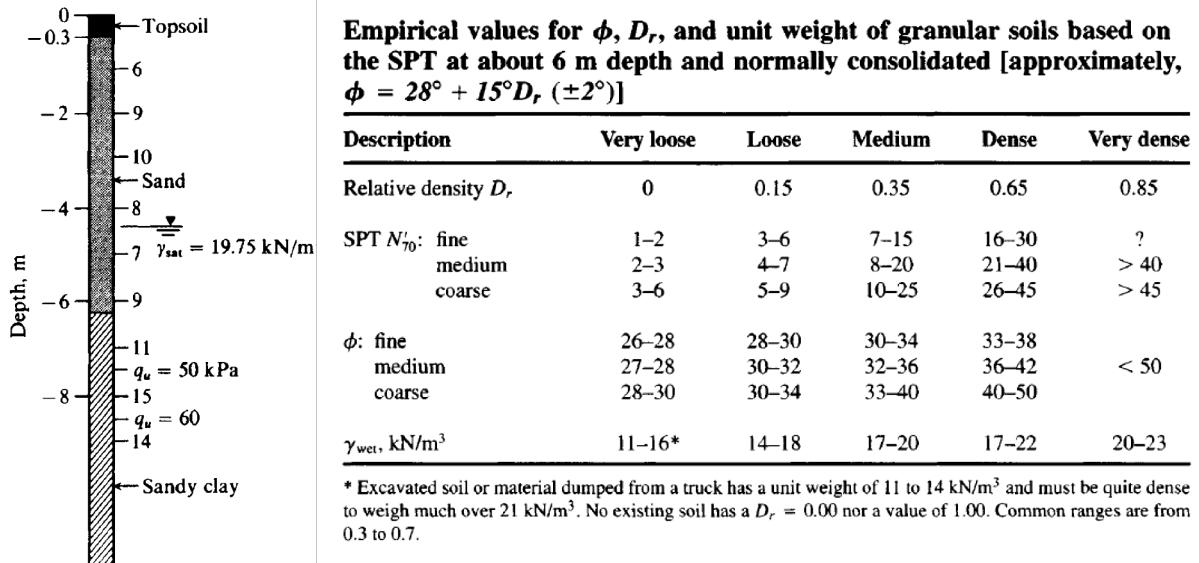



Figure and Table of Problem 1, from Bowles (1988).

## Question

➤ Referring to Table above, make reasonable estimates of the relative density  $D_r$  and shear strength angle  $\phi'$  (*called in the table  $\phi$* ) for the sand both

- above the GTW and
- below the GTW.

## Definitions of Interest

- By knowing the measured blow count,  $N$ , the standard blow count  $N'_70$ , (i.e. the adjusted blow count based on the energy ratio,  $E_r$ , defined below), can be calculated as

$$N'_70 = C_N \eta_1 \eta_2 \eta_3 \eta_4 N \quad (1)$$

where  $\eta_i$  are adjustment factors defined below (see Appendix) and  $C_N$  is a coefficient that considers the overburden vertical stress:

$$C_N = \left( \frac{95.76}{\sigma'_{v0}} \right)^{0.5} \quad (2)$$

with  $\sigma'_{v0}$  is the effective vertical overburden stress at the given depth  $\sigma'_{v0} = \sigma_{v0} - p_w = \gamma z - \gamma_w z$

The coefficients  $\eta$  provide a correction of the blows counts based on the drill system and for the specific problem they are set as follows:

- $\eta_1 = \frac{E_r}{70}$  (energy efficiency coefficient)
- $\eta_2 = 1$  (rod length correction)
- $\eta_3 = 1$  (sampler correction)
- $\eta_4 = 1$  (borehole diameter correction)

- Assume  $E_r = 60$  (= actual hammer energy to the sampler/input energy in percentage) for the  $N$  values shown in the Figure.  $E_r$  then allows one to estimate the energy efficiency coefficient,  $\eta_1$ . This allows ultimately for the estimation of  $N'_{70}$ .
- Using this value, for a given grain size of geomaterial, the relative density,  $D_r$ , can be estimated using the Table. Once the  $D_r$  is estimated, the shear strength angle can be evaluated according to the following empirical formula:

$$\phi' = 28^\circ + 15^\circ D_r (\pm 2^\circ) \quad (3)$$

## 2. Cone Penetration Test (CPT)

### Problem Statement

---

The CPT test consists of pushing the standard cone into the ground at a rate of 10 to 20 mm/s and recording the resistance. The Table of problem 2 (data are reported in the excel file “**Ex5 – Data**”) shows the result of a Cone Penetration Test CPT. The GWT is located at depth 3 m. We assume an average  $\gamma = 16.5 \text{ kN/m}^3$  above the GWT and  $\gamma_{\text{sat}} = 19.81 \text{ kN/m}^3$  below the GWT.

| Depth, m | $q_c$ , MPa | $q_s$ , kPa | Soil classification  |
|----------|-------------|-------------|----------------------|
| 0.51     | 1.86        | 22.02       | Sandy silt           |
| 1.52     | 1.83        | 27.77       | Silt and clayey silt |
| 1.64     | 1.16        | 28.72       | Very silty clay      |
| 2.04     | 1.15        | 32.55       | Very silty clay      |
| 2.56     | 2.28        | 24.89       | Silty sand           |
| 3.04     | 0.71        | 22.02       | Silty clay           |
| 3.56     | 0.29        | 12.44       | Clay                 |
| 4.08     | 0.38        | 15.32       | Clay                 |
| 4.57     | 1.09        | 21.06       | Very silty clay      |
| 5.09     | 1.22        | 31.60       | Very silty clay      |
| 5.60     | 1.57        | 28.72       | Silt and clayey silt |
| 6.09     | 1.01        | 30.64       | Very silty clay      |
| 6.61     | 6.90        | 28.72       | Sand                 |
| 7.13     | 5.41        | 39.26       | Sand                 |
| 7.62     | 10.50       | 26.81       | Sand                 |
| 8.13     | 4.16        | 27.77       | Sand                 |
| 8.65     | 2.45        | 43.09       | Silt and clayey silt |
| 9.14     | 8.54        | 26.11       | Sand                 |
| 9.66     | 24.19       | 76.60       | Sand                 |
| 10.18    | 32.10       | 110.12      | Sand                 |
| 10.66    | 23.34       | 71.82       | Sand                 |
| 11.18    | 5.86        | 62.24       | Silty sand           |
| 11.70    | 4.17        | 57.45       | Sandy silt           |
| 12.19    | 17.93       | 86.18       | Sand                 |
| 12.71    | 24.71       | 73.73       | Sand                 |
| 13.22    | 25.79       | 76.60       | Sand                 |
| 13.71    | 13.27       | 85.22       | Sand                 |
| 14.23    | 1.41        | 43.09       | Very silty clay      |
| 14.75    | 2.73        | 196.30      | Clay                 |
| 15.24    | 1.75        | 108.20      | Clay                 |
| 15.75    | 1.02        | 78.52       | Clay                 |
| 16.27    | 0.82        | 36.38       | Clay                 |
| 16.76    | 1.88        | 72.77       | Very silty clay      |
| 17.28    | 1.46        | 106.29      | Clay                 |
| 17.80    | 1.15        | 51.71       | Clay                 |

Table of Problem 2, from Bowles (1988).

## Questions

- Plot the tip resistance ( $q_T$ ), the sleeve friction ( $f_s$ ), and friction ratio ( $fr=f_s/q_T\%$ ) with respect to depth.
- Considering the friction ratio, provide comments related to its variation with depth and type of soil.
- Compute the undrained shear strength  $s_u$  at depth 5.6 m (assuming  $N_k=15$ ), and the shear strength angle  $\phi'$  at depth 7.62 m.

## Definitions of Interest

- From CPT test, the undrained shear strength  $s_u$  can be estimated according to the following empirical formula:

$$s_u = \frac{q_T - \sigma_{v0}}{N_k} \quad (4)$$

where  $\sigma_{v0}$  is the vertical total stress, and  $N_k$  is the cone factor that here is set equal to 15 (typical values ranges from 15 to 20).

- Moreover, shear strength angle  $\varphi'$  can be also evaluated according to the following empirical formula:  

$$\varphi' = 29^\circ + \sqrt{q_T} \quad (5)$$

where  $q_T$  should be in MPa.

### 3. The Pressuremeter Test (PMT)

#### Introduction to PMT Test Procedure

The pressuremeter is composed of a dilatable probe placed in a borehole, tubes for transmitting fluids (air and water), a pressure and volume controller, and a reserve of compressed gas (Figure below). The principle of the test consists of inflating a dilatable probe in a borehole and linking the pressure of the inflation to a measurement of the deformability of the soil, the pressuremeter Young modulus  $E_{sp}$  and a measurement of the pressure limit  $p_{LM}$ .

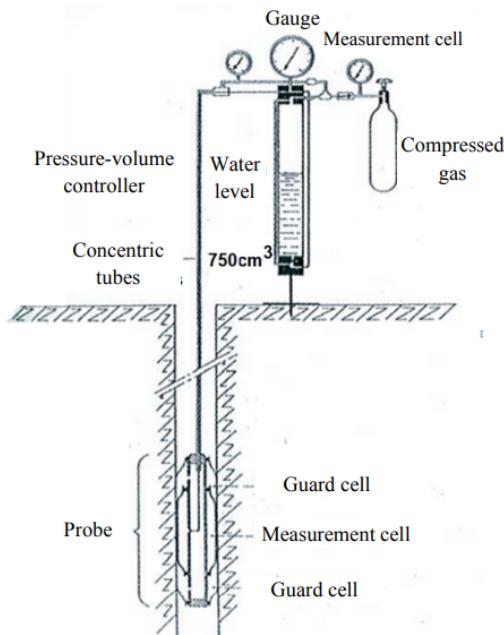



Figure 2 Diagram of the principle of the Pressuremeter (Monnet et al., 2015)

#### Problem statement

A pressuremeter test is conducted in soft clay. The resulting plot of cell pressure  $p$  versus total injected volume is given in the Figure below. The test point is 4 m bgs and the unit weight of the overlying strata is  $\gamma_{sat} = 19.81 \text{ kN/m}^3$  (the soil is also saturated above the GWT as a result of capillarity; the AEV of the soil is greater than 30 kPa and a hydrostatic pore water pressure distribution can be assumed over depth). The GWT is 3 m bgs. For  $S=100\%$  take Poisson ratio  $v=0.5$ .

#### Question

- Calculate the lateral stress coefficient  $K_0$ .

➤ Calculate the shear modulus  $G$




Figure 3 Data from a pressuremeter test in soft clay

### Definitions of interest

In practice we obtain the slope  $\frac{\Delta V}{\Delta p}$  from the linear part of the cell pressure versus volume plot, to obtain the shear modulus as follows:

$$G = \frac{E_{sp}}{2(1 + \nu)} = V_o' \frac{\Delta p}{\Delta V} \quad (7)$$

where

- $E_{sp}$  is the pressuremeter Young modulus
- $\nu$  is the Poisson ratio
- $V_o'$  is the volume of the measuring cell at average pressure  $\Delta p$ ,  $V_o' = V_0 + V_c$ ,
- where  $V_0$  is the volume of the measuring cell at the start of the linear part of the cell pressure, while  $V_c$  is the average of the additional (to  $V_0$ ) injected volume in the linear part of the cell pressure versus volume plot,
- $\Delta p$ ,  $\Delta V$  are defined in the Figure above

The pressuremeter Young modulus  $E_{sp}$  is then calculated by using an estimated value of  $\nu$  with the use of the relation  $E_{sp} = E_s = 2G(1 + \nu)$ .

The value  $p_h$  shown on the Figure above is taken as the expansion pressure of the cell membrane in solid contact with the soil and is approximately the in-situ lateral stress  $\sigma_h$ . The lateral stress coefficient  $K_o$  is defined as follows:

$$K_o = \frac{\sigma_h'}{\sigma_{vo}'} \quad (8)$$

## References

Bowles, J. E. (1988). *Foundation Analysis and Design*, 4<sup>th</sup> Edition, McGraw-Hill.

Monnet, J. (2015). *In situ tests in Geotechnical Engineering*. John Wiley & Sons.

## Appendix

| Hammer for $\eta_1$                   |                            |                 |                                |        | Remarks                                                                                                                       |
|---------------------------------------|----------------------------|-----------------|--------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| Country                               | Average energy ratio $E_r$ |                 |                                |        | R-P = Rope-pulley or cathead<br>$\eta_1 = E_r/E_{rb} = E_r/70$<br>For U.S. trip/auto w/ $E_r$ = 80<br>$\eta_1 = 80/70 = 1.14$ |
|                                       | Donut                      |                 | Safety                         |        |                                                                                                                               |
| R-P                                   | Trip                       | R-P             | Trip/Auto                      |        |                                                                                                                               |
| United States/<br>North America       | 45                         | —               | 70–80                          | 80–100 |                                                                                                                               |
| Japan                                 | 67                         | 78              | —                              | —      |                                                                                                                               |
| United Kingdom                        | —                          | —               | 50                             | 60     |                                                                                                                               |
| China                                 | 50                         | 60              | —                              | —      |                                                                                                                               |
| Rod length correction $\eta_2$        |                            |                 |                                |        |                                                                                                                               |
| Length                                | > 10 m                     | $\eta_2 = 1.00$ | $N$ is too high for $L < 10$ m |        |                                                                                                                               |
|                                       | 6–10                       | = 0.95          |                                |        |                                                                                                                               |
|                                       | 4–6                        | = 0.85          |                                |        |                                                                                                                               |
|                                       | 0–4                        | = 0.75          |                                |        |                                                                                                                               |
| Sampler correction $\eta_3$           |                            |                 |                                |        |                                                                                                                               |
| Without liner                         |                            | $\eta_3 = 1.00$ | Base value                     |        |                                                                                                                               |
| With liner: Dense sand, clay          |                            | = 0.80          | $N$ is too high with liner     |        |                                                                                                                               |
| Loose sand                            |                            | = 0.90          |                                |        |                                                                                                                               |
| Borehole diameter correction $\eta_4$ |                            |                 |                                |        |                                                                                                                               |
| Hole diameter: <sup>†</sup>           | 60–120 mm                  | $\eta_4 = 1.00$ | Base value; $N$ is too small   |        |                                                                                                                               |
|                                       | 150 mm                     | = 1.05          | when there is an oversize hole |        |                                                                                                                               |
|                                       | 200 mm                     | = 1.15          |                                |        |                                                                                                                               |

\* Data synthesized from Riggs (1986), Skempton (1986), Schmertmann (1978a) and Seed et al. (1985).

<sup>†</sup>  $\eta_4 = 1.00$  for all diameter hollow-stem augers where SPT is taken through the stem.